TABLE OF CONTENTS

1.0 INTRODUCTION ... 1
 1.1 LATCH-UP OVERVIEW ... 1
 1.1.1 Mechanisms Triggering Latch-up ... 2
 1.1.2 Latch-up Induced Failures .. 3
 1.2 LATCH-UP PREVENTION TECHNIQUES .. 3
 1.2.1 Well Ties ... 4
 1.2.2 Guard Rings ... 4
 1.2.3 Thyristor Isolation Techniques ... 5
 1.3 LATCH-UP TESTING .. 6

2.0 LATCH-UP ANALYSIS AND VERIFICATION FLOWS WITH EDA TOOLS 6
 2.1 DYNAMIC ANALYSIS .. 7
 2.1.1 Technology CAD (TCAD) ... 7
 2.1.2 SPICE .. 8
 2.2 STATIC VERIFICATION ... 10
 2.2.1 Identification of Layout Elements ... 11
 2.2.2 Traditional DRC Verification .. 14
 2.2.3 Context-Aware DRC/ERC Verification ... 15
 2.2.4 Summary of DRC and Context-Aware Methods .. 19
 2.3 CURRENT DENSITY (CD) AND POINT-TO-POINT (P2P) ANALYSIS 20

3.0 LATCH-UP SCENARIOS - APPLICATION AND VERIFICATION.......................... 23
 3.1 CONVENTIONAL LATCH-UP IN LOW VOLTAGE (LV) CMOS CIRCUITS 23
 3.1.1 Well Ties ... 25
 3.1.2 Guard Rings ... 27
 3.1.3 Thyristor Isolation Techniques ... 29
 3.2 CONVENTIONAL LV CMOS LATCH-UP – SPECIAL CASES 32
 3.2.1 Grounded n-wells and n+ Diffusion Areas ... 33
 3.2.2 Biased Wells .. 38
 3.2.3 Native Devices .. 40
 3.3 HV LATCH-UP BETWEEN ISOLATED POCKET REGIONS 40
 3.4 LATCH-UP IN FINFET TECHNOLOGIES ... 46
 3.5 NON-QUALIFICATION LATCH-UP SCENARIOS .. 48
 3.5.1 Transient Latch-up (TLU) ... 48
 3.5.2 System Level Latch-up .. 52
 3.5.3 Parasitic Thyristor Triggering during ESD Stress ... 52
 3.5.4 Latch-up Triggering by Single Events ... 54

4.0 CONCLUSIONS .. 55

5.0 DEFINITIONS ... 55
ANNEXES
Annex A (Informative): ReferenceLatch-Up Rules .. 57
Annex B (Informative): References ... 74

FIGURES
Figure 1: Cross-Section of a Conventional Latch-up Susceptible Structure 1
Figure 2: IV Characteristics of a Conventional Thyristor Structure in Which the Anode and n-wells are Shorted to VDD and the Cathode and p-wells are Shorted to VSS 2
Figure 3: Well Ties "n-tie" and "p-tie" Placed in n-well and p-well, Respectively 4
Figure 4: N and P-Type Guard Rings "nGR" and "pGR," Respectively 5
Figure 5: Latch-up Analysis and Verification Flows: Dynamic (Simulation-Based), Empirical Measurements, and Static Flows .. 7
Figure 6: Current Density from a TCAD Simulation of a Device in a Latched State 8
Figure 7: Schematic of a Latch-up Compact Model .. 9
Figure 8: Latch-up Verification Flow with SPICE Simulation 10
Figure 9: Accurate Latch-up Rule Checks Require Voltage Awareness 11
Figure 10: Core nmos in p-well with Limited Number of p-well Ties in Proximity to I/O pmos 12
Figure 11: Guard Ring Identification .. 12
Figure 12: Marker Layers Used to Help Identify Hot Diffusion Areas and Guard Rings to Enable Latch-up DRC Verification ... 13
Figure 13: Simplified Latch-up Verification Flow ... 14
Figure 14: Graph Showing Transfer Between Aggressor and Victim for DC Currents of -150 Milliamperes and -300 Milliamperes .. 15
Figure 15: Indirectly Connected Hot Diffusion Areas and Cathode, Which are Not Identifiable by Traditional DRC and Require the Use of Connectivity-Based EDA Tools 16
Figure 16: Padnet Cell Placement Schematic Example; Nets Go to External Pads 18
Figure 17: High-Side Aggressors and Victims Flagged in the Schematic 18
Figure 18: Latch-up Risk Associated with the Drivers Consisting of Multiple Parallel MOS Device Segments Connected to I/O Pad Via ~1 Kilohm of Ballast-Resistance 19
Figure 19: Layout-Based Latch-up Electrical Check Flow ... 20
Figure 20: Latch-up Analysis GUI for Debug Assistance .. 21
Figure 21: Guard Ring Resistance to Power or Ground Pins 21
Figure 22: High Current Density Due to Unintended Guard Ring Current During ESD Events ... 22
Figure 23: Failure of Guard Ring Interconnect During Latch-up Current Injection and Subsequent Resistance and Current Density Analysis 23
Figure 24: I/O Injection Induced Latch-up in LV CMOS Core: Cross-Section of the Simplified Structure and Schematic Sketch ... 24
Figure 25: Illustration of the Well Tie Spacing Rules in Core 25
Figure 26: Calculation of Well Tie Area for Well Tie Spacing Rules 25
Figure 27: Calculation of p-well Tie Distance Via n-well 26
Figure 28: An Example of ESD Rules for Well Tie Spacing in Proximity of I/O Area 26
Figure 29: Cross-Section of the I/O Latch-up with High-Side and Low-Side Aggressors ... 27
Figure 30: The Dependence of the Holding Voltage on the Anode-to-Cathode Spacing Including the Technologies with a Thinner Epi-Layer and/or Highly Doped Substrates (Low-Ohmic) ... 28
Figure 31: An Example of an Elevated, Isolated p-well Near a Grounded n-well (Cap) 29
Figure 32: Simplified Layout View to Demonstrate Parasitic Thyristor Identification 29
Figure 33: Simplified Layout View to Demonstrate Identification of a Parasitic Thyristor in Relation to the “Hot” Anode Which is Also an Aggressor... 30
Figure 34: Simplified Layout View to Demonstrate Identification of a Parasitic Thyristor in Relation to “Hot” Cathode Which is Also an Aggressor... 31
Figure 35: Workflow Diagram Reflecting the Method of Parasitic Localization 32
Figure 36: Result of the Verification Flow Application for Identifying Critical Parasitic Thyristors 33
Figure 37: Cross-Section of Thyristor with Grounded n+ Diffusion Area 33
Figure 38: Cross-Section of Thyristor with Grounded n-well ... 33
Figure 39: Example Flow Chart of a Grounded n-well Rule Check 34
Figure 40: Example of the Code to Detect Grounded n-well Parasitic Thyristors 35
Figure 41: Grounded n-well Design Rules for Latch-up Prevention 36
Figure 42: First Example of Spacing Violation Detected by Verification Tool Between Hot n-well and Grounded n-well ... 37
Figure 43: Second Example of Spacing Violation Detected by Verification Tool Between Hot n-well and Grounded n-well ... 37
Figure 44: Cross-Section of Parasitic Thyristors with Biased n-well ... 39
Figure 45: Parasitic Thyristor Formed by Large pmos Switch (Biased n-well) in the Vicinity of Grounded n-well .. 39
Figure 46: Cross-Section of nmos in p-well and the Native Device (p-well Blocking) 40
Figure 47: Structure for (a) HV Latch-up with Current Path for the HS Injection, (b) Equivalent Circuit Diagrams for the HS Hole, and (c) LS Electron Injection 41
Figure 48: Cross-Section to Illustrate HV Latch-up Scenarios with (a) Additional Collection of the Low-Side Electron Injection with Biased n-type Guard Ring and (b) High-Side Holes with Dummy p-collector .. 42
Figure 49: Rail-Based ESD Protection Network with NLDNmos Based HV Active Clamp 42
Figure 50: (a) High-Side Hole Aggressors and Victims and (b) Low-Side Electron Aggressors and Victims .. 43
Figure 51: Highlighting the (a) Instance Constraint Added to a Schematic and (b) Distance Constraint Visualized in the Layout of the Devices Constrained 44
Figure 52: Block Layout Showing HS Injecting Diodes and the Final Top-Level Cell 44
Figure 53: Comparison of the Simplified Circuit Diagrams for (a) the LS Injection Latch-up Q1-npn and (b) Dual Injection Latch-up Q1(npn)+ Q2(pnp) .. 45
Figure 54: Sketch of Latch-up Aggressors and Victims Arranged in an Area-Array (Well Track) I/O Layout in FinFET Technology ... 46
Figure 55: Blast Zones for Macros with Logic-Devices Around Latch-up Aggressors in a FinFET Process .. 48
Figure 56: Transient Latch-up at Supply Lines ... 49
Figure 57: Transient Latch-up at I/Os .. 49
Figure 58: Parasitic Thyristor Test Structure with Biased n-well ... 50
Figure 59: Static Overvoltage Latch-up Test at Room Temperature on a Parasitic Thyristor Structure ... 50
Figure 60: Transient Overvoltage Latch-up Test on a Parasitic Thyristor Structure 51
Figure 61: Topology Concept for Transient Latch-up Protection ... 51
Figure 62: Cross-Section View of Parasitic Thyristors Formed Between Different Voltage Domains During Unpowered ESD .. 53
Figure 63: Violation Reported by an EDA Tool for an HV p+ Diffusion Area Connected to VDD Having a Distance Less Than dac to a Nearby n-well Connected to a Different Supply .. 54
Figure 64: Hole-Electron Generation as a Result of Cosmic Radiation in the Logic 54
Figure 65: Graphical Representation of the Spacing Rules .. 59
Figure 66: Graphical Representation of Alternate Paths to be Recognized by DRC 59
Figure 67: Graphical Representation of Minimum Well Tie Area Rule (LU_INT_6) 61
Figure 68: Latch-up Rules for Identification of Latch-up Aggressors 63
Figure 69: Rules for Latch-up Protection From p+ Diffusion Area as Aggressor 65
Figure 70: Rules for Latch-up Protection From n+ Diffusion Areas as Aggressors 66
Figure 71: Latch-up Rules for Logic Around Aggressors and Depiction of Zones A, B, and C Around a Latch-up Aggressor ... 68
Figure 72: Identification of a Critical Thyristor Between pmos with n-well Hard at Power or Biased n-well versus n-well at Lower Potential Around n Aggressor .. 70
Figure 73: Identification of a Critical Thyristor Between pmos with n-well Hard at Power or Biased n-well versus n-well at Lower Potential Around p Aggressor .. 71
Figure 74: Example of the IC Layout with Graphical Representation of the Method 71
Figure 75: High-Side and Low-Side High Voltage Latch-up Rules 73