

University of Arkansas – CSCE Department
Capstone II – Final Report – Spring 2025

Electrostatic Discharge Latch-Up Detection

Gavin Edens, Kile Harvey, Luke Simmons, Carl von Bergen

Abstract

When designing integrated circuits (ICs) using Complementary Metal-Oxide-Semiconductor
(CMOS) technology, an important issue that must be accounted for in the design process is
latch-up, an unwanted occurrence in which power and ground become shorted due to voltage
differentials across terminals on a CMOS gate. A common perpetrator of this phenomenon is
electrostatic discharge (ESD), in which a charge is quickly released from an outside source into
the IC, thereby causing latch-up. In industry, designs are tested for their resilience to this by
using test benches that force conditions that can cause latch-up.

The Electrical Engineering (EE) team that we worked with on this project was tasked with
creating a board that would function similarly to the test benches used in industry for causing
latch-up in designs. There is information, however, that can be obtained by collecting data about
the state of the design leading up to the occurrence of latch-up, which can lead to a deeper
understanding of latch-up and why it occurs.

This data is tedious to manually parse through and interpret, so we created a desktop application
that receives this data from the board and presents it in a way that is easy to interpret for users of
the application, along with allowing for customization of the data visualization. We also allow
control of the microprocessor on the board through interfacing with the desktop app.

1.0 Problem

Electrostatic discharge (ESD) can cause a phenomenon called latch-up in CMOS technology,
which can permanently damage integrated circuits [1]. When electrical engineers design a
circuit, this is something that they must be aware of and understand. This project focuses on
helping electrical engineering students at the University of Arkansas to understand what ESD
latch-up is and what leads to it by designing lab devices to measure the conditions of the circuit
leading up to latch-up and using computer software to record and graphically display the data.
Eventually, there are also hopes that this test bench can be extended for use in research
applications for industry standard testing, too. As a joint project between an EE team and the
Computer Science/Computer Engineering (CSCE) team, we improved upon last year’s design by
making the test bench communicate with a computer while also allowing for easy control and
data processing.

Electrostatic Discharge Latch-Up Detection

In the electrical engineering industry, there are tests for resilience against latch-up caused by
ESD. The standards organization for defining these is the Joint Electron Device Engineering
Council (JEDEC). They define many electrical standards, one of which being JEDEC78F [2],
which defines the testing standards for different levels of latch-up testing. Many electronics
manufacturers use this standard for testing their circuits, so it is important to understand this
testing standard as an engineer. This project is targeting JEDEC78F with levels A and B
specifically in mind, but it is not an absolute requirement to precisely meet these standards for
this project. Level A is more stringent, where a pin is tested at ± 100mA for current injection,
and 1.5 times the maximum supply voltage for a voltage injection test. Level B is set by the
manufacturer, who determines the current and voltage levels that the device can withstand if it
does not pass level A testing and reports each value.

Last academic year, a device was made by an EE senior design team here at the University of
Arkansas that can trigger and measure conditions leading up to one type of ESD latch-up.
However, this initial product is missing many useful features. This year, the design is being
improved upon by the EE and CSCE teams to add these missing features. On the electrical side,
I2C potentiometers were added to adjust testing criteria, and new types of ESD latch-up tests
were available for testing, including: voltage tests, injections tests, and negative injection tests.
The CSCE team were tasked with bridging the gap from the board to the desktop application,
creating functionality for users to be able to select and start tests from the application, and
displaying the data collected usefully. The computer software needs to be able to help lab
students understand how the voltages and currents at various points of the board change as
latch-up occurs.

This year, USB communication was integrated, so the test bench now has the ability to send and
receive data from a controlling device. Using this, our application will display the data in a
variety of ways so that students can explore the data collected – as opposed to needing to probe
the device using an oscilloscope. It also will graph data in a way that is easily understandable,
yet fully customizable so that users may interpret the data in different ways. It also will allow the
users to trigger latch-up and load saved data from previous latch-up occurrences on request.

Dr. Chen, a professor at the University of Arkansas and our project sponsor, is also collaborating
with industry partners, such as Huawei, making it ideal for the device and software to eventually
be used for testing equipment under industry standards such as JEDEC IC Latch-Up Tests.
Therefore, the project should be designed with this future-proofing in mind.

The contributions by the CSCE team will make it easier for students to understand and interpret
latch-up in CMOS technology. Without our application, lab students would not be able to view
latch-up data in easily digestible formats, quickly compare, save, and load data, or be able to
select from a variety of latch-up tests; instead, data collection could only occur through an
oscilloscope, which is not only a limited resource on campus, but also has a significant
disadvantage in ease of use compared to a desktop application.

2.0 Objective

The objective of this project is to create an application that will interface with a latch-up test
board designed by the EE Team. Upon request, the application should send a command to the

 2

Electrostatic Discharge Latch-Up Detection

test board, causing it to begin one of the latch-up tests. The application will then start receiving
data from the board, where it will start graphing this data. The user will then be able to access
different graphs of different data sets, along with allowing the data to be saved to a file for later
access. Additionally, it allows for the graphing of previously saved data, with all the
aforementioned functionality.

3.0 Background

3.1 Key Concepts

3.1.1 CMOS

CMOS, which stands for complementary metal-oxide semiconductor, is a semiconductor
technology that is characterized as having both N-type and P-type transistors. An N-type
transistor conducts electricity when a voltage over a specific threshold is applied to its gate,
whereas a P-type transistor conducts electricity when the voltage applied to its gate is under this
threshold. They are used together to form logic gates and other components that have much
lower power consumption than either type of transistor alone would be able to achieve. In the
manufacturing process, both the P- and N-type transistors are able to be placed on a single
silicon wafer by creating “wells” in the different substrate types [3].

3.1.2 ESD

Electrostatic discharge (ESD) occurs when charge builds on a surface and is nearly
instantaneously dissipated onto another. This is the same phenomenon that happens when you get
a shock from touching something metal. When it comes to integrated circuits, this can be
damaging to the circuit if not properly protected against. Electrical components can become
shorted, heated to the point of damage from the shock, among many other unwanted things [4].
This includes latch-up.

3.1.3 Latch-up

Latch-up is an occurrence in CMOS technology where, usually due to some outside charge, there
is a feed-back loop created within a CMOS element that causes the supply voltage to be shorted
to ground. This is due to how CMOS is implemented on silicon wafers. The inclusion of N- and
P-type diffusion in the wafer can create what are known as “parasitic transistors,” where PNP or
NPN junctions in the substrate which aren’t meant to be transistors can act as such. This leads to
current flowing through the substrate in ways that were never intended. If these flow in just the
right way, the parasitic transistors become stuck in an “on” state, allowing a low resistance path
between ground and the supply voltage. Often this latch-up phenomenon can be caused by
electrostatic discharge, as this is an easy way for charge to build up and release in a manner that
can overpower transistors. Typically, this cannot be stopped by normal functionality and requires
a full power-off of the design in which latch-up has occurred. This causes multiple problems,
including loss of functionality, excess power consumption, and even damage to the IC [1].

3.2 Related Work

3.2.1 Other latch-up recording software

 3

Electrostatic Discharge Latch-Up Detection

Some companies offer software solutions in order to detect latch-up, such as the one discussed in
[5]. The issue with these solutions, however, is that they offer data in a rather unpleasant
form-factor. We believe that we can make a more attractive and human-readable display of data
collected from the board. In addition, our application will have better integration with the EE
team’s custom board, as we will be building the software specifically for use with said board.
Overall, we expect our application to be superior to those already available on the market in
terms of this specific use case.

3.2.2 Other serial data-plotting software

Likewise, there are other tools available which allow the plotting of data received through serial
communication, such as [6] and [7]. While it is likely that we integrate something similar into
our application, this plotting software by itself is not enough for us to be able to visualize all
aspects of the data that we would like to, nor would it allow a user to customize what is
displayed to the degree that we envision for the project.

4.0 Design

4.1 Use Cases

The primary use cases include the ability to cause latch-up on the test board from the desktop
application, view graphical representations of the data received from the EE board, and write
data to and read data from CSV files.

The user is able to pick from one of three latch-up tests, which include the positive current
injection test, the negative current injection test, and the voltage pulse test. Note: The voltage
pulse test is an option that is available in the application but the board does not currently support
it. The user will then be able to choose to run the test, signaling to the board to start the selected
test and begin sending data to the application. The graphable data includes the voltage or current
of various points in the design, which is expanded upon in the requirements section.

For each of the tests, the application both graphs the data being received, and stores the data in a
way that can easily be saved to a CSV file. Once the board signals that it is finished sending data,
different graphs may be selected from, allowing the user to view all forms of recorded data
against elapsed time. If desired, the user can then save the collected data to a formatted CSV file.

In addition to starting latch-up tests, the application is also able to read previously saved CSV
files, allowing for access to previously run tests. This also includes the ability to view the same
graphs available after latch-up tests.

Each of the tests involves different ways to cause latch-up. The positive and negative current
injection tests alter the current through the design, whereas the voltage pulse test pulses the
supply voltage of the design to values outside expected operational values.

 4

Electrostatic Discharge Latch-Up Detection

4.2 Requirements

4.2.1 Functional Requirements

● Motherboard records data at multiple points on the unit under test leading to, during, and
after ESD latch-up. The current unit under test is a CMOS inverter. Recorded data
includes:

○ Voltage at inverter output

○ Voltage at inverter input

○ Current through Silicon Controlled Rectifier (SCR) anode

○ Current through SCR Gate

○ Current from positive current injection test

○ Current from negative current injection test

○ Total test bench current supply

● Motherboard sends data to our desktop application through serial communication

● Desktop application is used to:

○ Calculate and store the data collected by the motherboard

○ Graph the data collected by the motherboard

○ Trigger specific latch-up tests on the board:

■ Positive injection test

■ Negative injection test

■ Voltage pulse test

● CSCE team in charge of the development of the desktop application

● EE team in charge of designing the required boards along with writing the firmware of
the microcontroller unit used for controlling the boards and communicating with the
desktop application

4.2.2 Interface Requirements

● Motherboard interfaces with a swappable daughter board in order to be able to test
multiple designs

● Serial communication between the computer and the testing device

○ Testing motherboard uses USB-C for power and data transmission

 5

Electrostatic Discharge Latch-Up Detection

● Desktop application stores data received from the device for:

○ Graphing

○ Saving to a CSV file if requested

● Customizable with multiple graphs and views that can be selected by the user:

○ Multiple tabs can be created with a button for graphing

○ Zoom with scroll wheel

○ Dependent variables selectable with dropdown

○ User can select device from menu bar if multiple devices are detected

○ User can set the potentiometer value, ranging from 0 to 9999 Ω.

● Desktop application will be able to send commands to the device

○ Starting selected latch up test

■ Selection is done through a drop-down menu on the main page or from the
menu bar

■ Test is started through a button on the main page or from the menu bar

● Computer must have a usable USB port

4.2.3 Performance Requirements

● Software runs on desktop, so not limited by embedded chip processing power

○ Calculations are not performed on the embedded device, which allows for a
higher effective sampling rate

● Board records data at a rate of once every 10 ms, or 100 Hz

● Communication must happen in near-real-time

● Computer must have enough storage/memory to store the data collected

4.3 High-Level Architecture

Our program is written entirely in Python. The EE team’s board utilizes an STM32
microprocessor, which communicates with our program through USB serial communication,
specifically using the UART protocol.

The application has four main components: the user interface, the data manager, the
communication controller, and the graph manager.

 6

Electrostatic Discharge Latch-Up Detection

The communication controller acts as a bridge between the rest of the application and the EE
board, allowing two-way communication. The controller initiates the serial port of the connected
board, saving it into memory, which then enables the sending and receiving methods to function
off the defined port.

The data manager handles receiving data from the communication controller, calculating the
actual value of data to be graphed, translating control bytes into commands and vice versa,
writing to and reading from CSV files, and sending data to the GUI for plotting. Control bytes
from the board are used to let the data manager know when to start and stop recording data,
along with letting the data manager know what type of data is being sent.

The user interface can be broken down further into both the graphical user interface (GUI) and
the backend of user-interactable elements of the GUI, the graphing manager. The graphing
manager is the bridge between the GUI and the data manager, it sends commands that cause one
of two things to occur: the data manager will either read data from or write data to a specified
CSV file, or the data manager will translate the command into a control byte and then forward
this control byte to the communication controller so that it can be sent to the board. Additionally,
the GUI is where all visual representations of data can be accessed.

Figure 1: High-level architecture diagram

 7

Electrostatic Discharge Latch-Up Detection

4.4 Detailed Architecture

Our project was developed using Python 3.12; we also utilized setuptools in order to package the
project into a Python module. Qt6 was used as the GUI toolkit and PyQtGraph was also used to
implement the graphs, both of which were implemented with the help of PySide6. When it
comes to managing data, both Python queues and Pandas [8] dataframes are being utilized in
order to allow for multithreading and CSV storage (more information in section 4.5). Finally,
serial communication over USB is managed using PySerial. This stack allowed for easy
development while meeting technical and performance requirements; it also allowed the
application to be cross-platform for Windows, macOS, and Linux. As of now, the application is
being developed as a proprietary program and will not be released as open source. def allowed

We used Git to handle our version control and used GitHub to host the main repository privately.
Our development flow involves creating a different branch for each new feature and merging
these into the main branch once fully tested. We also have GitHub Actions running tests, linters,
and builds to make sure there are no regressions in our software.

The GUI contains ways to control the device and visual representations of the data. In the file
menu in the menu bar, there are options for starting a new data collection session (“New
Project”), and loading test data from a CSV.

Figure 2: File Dropdown

Figure 3: Device Dropdown

 8

Electrostatic Discharge Latch-Up Detection

Figure 4: Help Dropdown

In the main screen, there is a drop-down box for selecting which test is going to be run, and the
test will eventually be able to be started by pressing “Run Test.” Any of the tests will also be able
to be started immediately from the “Device” menu. The graph will update in real time until it
gets a signal from the device that the test is done. The user can switch between different graph
views by using the tab switcher toward the top of the screen. New tabs can be created with the
dependent variable being selectable through the drop-down box, and hitting the “New View”
button to make the new tab.

Figure 5: Main window view after a test has been run and user added multiple datasets

 9

Electrostatic Discharge Latch-Up Detection

When saving data to the disk, a window will open up asking the user for a file path to save the
test data to, where it will then be saved as a CSV file. For opening a saved CSV to view
previously recorded data, a window will open asking the user to select the CSV file. These
menus are accessible from the “File” menu in the menu bar.

In regard to installing the application, we used PyInstaller to package the program into an
executable. We wrote documentation which can be opened from the “Help” menu for users to
access, in addition to writing descriptive tool-tips.

Communication with the test board will eventually be done through UART over USB, and
further collaboration between the electrical team and computer science team is still required to
develop the structure of commands and data sent between the computer and testing device.

4.5 Data Management and Storage

All internal data management and storage is handled by the data manager, whereas all external
data management and storage is done through CSV files.

Internally, data is stored in two ways: through Python queues and Pandas dataframes. Queues are
used to store any set of data that needs to be read from and/or written to by multiple sections of
the application at once. This is because Python queues are thread safe, which allows for easy
implementation of multithreading without worrying about data corruption. Dataframes are used
whenever data is being written to or read from CSV files, as they allow for simple formatting and
maintaining of structure without unnecessary overhead.

The application can either read in data from the EE board or simply open a CSV file in order to
store data in the memory of the application for graphing. Whenever graphing live, queues are
used to send data one at a time to the user interface, while a full dataframe is sent to be graphed
whenever opening a CSV.

The user may save data collected from a test or read from previous tests to a CSV file whenever
a test is not being run.

5.0 Development Plan

5.1 Tasks

5.1.1 Create project

This task included the creation of the GitHub repository and setup of the project file structure
that was used during the development of the application. While completing this task, multiple
systems were set up to ensure that each member of the team could operate as efficiently as
possible, including concise version control and main branch protection (with code review being
required before allowing merges).

5.1.2 GUI opening

Luke Simmons and Gavin Edens worked on opening the main UI window using the PySide6
python module. This window includes the basic elements of the program, such as the buttons,

 10

Electrostatic Discharge Latch-Up Detection

dropdown menus, and views for graphing. The functionality of each element was not fully
implemented yet, but the structure of the UI was.

5.1.3 Generate sample data

Kile Harvey collaborated with the EE team in order to accurately generate random data in a
manner similar to how the EE board will send data to the desktop application. During this task,
the communication controller was created, which acts as a communication bridge between the
board and the rest of the application. The storage of data from the board was also solidified, with
Python’s built-in queue being utilized for live read and write, and Pandas dataframes being
utilized for saving to and reading from CSV files.

5.1.4 Loading data from CSV

Harvey utilized Pandas dataframes in order to load data stored in a CSV into a Python queue,
eventually allowing the GUI to plot previously saved data. This was done using a built-in
function of Pandas that reads a CSV and creates a dataframe from it. During this task, the data
manager was created, which acts as the source of any data for the GUI. It also serves the purpose
of handling reading/writing of/to CSV files.

5.1.5 Graphing with sample data

Simmons and Edens worked on graphing the data, using the NumPy/SciPy modules to graph the
sample data. During this task, the graph manager class was created in order to receive data from
the data manager and plot the user-specified data points onto the application window.

5.1.6 UART communication

Carl von Bergen worked with the dummy board provided by the EE team to open a UART
(Universal Asynchronous Receive Transmit) connection via USB to interface with the
application.

5.1.7 Read in data from UART

After opening a UART connection, Von Bergen worked to read live data from the dummy board
and tested its functionality of sending and receiving data.

5.1.8 Save data to CSV

Harvey once again utilized Pandas in order to add file saving functionality to the data manager.
This addition involves storing data from the communication controller in a Pandas dataframe for
the sole purpose of writing the data to a CSV. Pandas has a built-in function for doing this,
similar to the function used for creating a dataframe from a CSV.

5.1.9 Live graph data

Edens tweaked the graph manager class to allow plotting to the graph as data comes in, rather
than needing the full data set before the plot is updated. This required an update to how the plot
object is initialized.

 11

Electrostatic Discharge Latch-Up Detection

5.1.10 Customize graphs

Simmons and Edens worked to create a menu that allows the user to overlay/select any desired
data sets. They also implemented functionality for creating multiple views to further isolate the
data being shown.

5.1.11 Start test from computer

Once live viewing of all relevant data was achieved, every member worked to initiate the several
tests, outlined earlier in this proposal, from the application.

5.1.12 Board Communication Protocol

Harvey worked with the ELEG team to establish a communication protocol between the board
and the desktop application. Eventually, it was decided that data would be sent over UART using
ASCII encoding. Commands are sent from the application with a single ASCII character
followed by a carriage return. The board sends back confirmation signals to let the application
know that the command was received correctly. When a test is started, raw data from analogue to
digital converters on the board is sent to the application, with roughly 14 milliseconds between
each data point.

5.1.13 Create installable executable

After all of the above tasks were completed and the minimum viable product was achieved,
Simmons created an installer to permanently install the program to the system. This installs the
application to a permanent directory for each OS and generates a launcher entry (Start Menu,
Launchpad, etc.) for our app. An icon was also designed for the program.

5.1.14 Finalize Documentation

Once the application had been finalized and no further changes were planned, all members
collaborated to create a comprehensive and easily understood documentation to ensure any user
will be able to fully operate the application in a lab environment.

5.2 Schedule

Task Description Assigned
Members

Est Start Est End Actual
Start

Actual End

Create Project Luke Simmons 11/12/24 11/17/24 11/12/24 11/17/24

GUI Opening Luke Simmons
and Gavin Edens

1/20/25 1/24/25 1/21/25 1/25/25

Generate Sample
Data

Kile Harvey 1/20/25 1/24/25 1/21/25 2/3/25

Loading Data from
CSV

Kile Harvey 1/27/25 1/31/25 1/27/25 2/6/25

 12

Electrostatic Discharge Latch-Up Detection

Graphing with
Sample Data

Luke Simmons
and Gavin Edens

2/3/25 2/14/25 2/4/25 2/21/25

UART
Communication

Carl von Bergen 2/3/25 2/7/25 2/6/25 2/21/25

Read in data from
UART

Carl von Bergen 2/10/25 2/14/25 2/22/25 3/21/25

Save Data to CSV Kile Harvey 2/17/25 2/21/25 2/7/25 2/10/25

Live Graph Data Luke Simmons
and Gavin Edens

2/24/25 3/7/25 2/21/25 3/13/25

Customize Graphs Luke Simmons
and Gavin Edens

3/10/25 3/14/25 3/17/25 4/14/25

Start Test from
Computer

All Members 3/17/25 3/28/25 4/14/25 4/23/25

Board
Communication
Protocol

Kile Harvey N/A 4/4/25 3/31/25 4/14/25

Create Installable
Executable

Luke Simmons 3/31/25 4/4/25 1/15/25 4/23/25

Finalize
Documentation

All Members 4/7/25 4/28/25 4/14/25 4/23/25

5.3 Deliverables

● Architecture overview: A diagram of how different parts of the application connect
together. Includes detailed descriptions of each part.

● Python code: Our entire project will be programmed in Python. This is split into multiple
modules with major sections including communication control, data management and
user interface.

● Installation and usage documentation

● Sample data: This will be a CSV file with test data.

 13

Electrostatic Discharge Latch-Up Detection

6.0 Key Personnel

Gavin Edens – Edens is a senior Computer Science and Computer Engineering major in the
Electrical Engineering and Computer Science Department at the University of Arkansas. He has
experience working at a local MSP handling IT services.

Kile Harvey – Harvey is a senior Computer Engineering major in the Electrical Engineering and
Computer Science Department at the University of Arkansas. He is currently an hourly research
assistant in Dr. Jia Di’s research lab, “TruLogic.” He has experience in FPGA development and
microcontroller implementation, along with desktop application development.

Luke Simmons – Simmons is a senior Computer Science and Computer Engineering major in
the Electrical Engineering and Computer Science Department at the University of Arkansas.
Currently, he is an Undergraduate Researcher in Dr. Chris Farnell’s RIOT Lab, focusing on
cybersecurity. He has also interned at Walmart doing software development and at a local MSP
doing IT services.

Carl von Bergen – Von Bergen is a senior Computer Science major in the Electrical Engineering
and Computer Science Department at the University of Arkansas. He is currently taking
Computer Networks with Dr. Dale Thompson, Computer Graphics with Dr. John Gauch, and
Information Security with Dr. Chris Farnell.

Zhong Chen – Dr. Zhong Chen is an associate professor of the Electrical Engineering and
Computer Science department here at the University of Arkansas, along with the sponsor of our
project.

Robert Saunders – Robert Saunders is a faculty member of the EE department. We have
collaborated with him to better understand the scope of this project and ESD latch-up itself. He
also assisted us in acquiring a dummy board from the EE team for testing purposes.

Electrical Engineering Team: Logan Gentry, Peter Brinkman

Dallas Blank – Blank is a graduate student of Dr. Chen, and is currently standing in for Dr. Chen
in sponsor duties. He was a member of the senior design team that this year’s project is based off
of, and has been providing guidance on the project, along with signing off on proposals and
reports in order to keep both teams on schedule.

Harshdeep Singh – Singh was also a member of the previous academic year’s senior design
team and has provided guidance on the project.

Industry Professionals: Scott Ward (Texas Instruments), Robert Gauthier (IBM), Nate Peachey
(Qorvo), Kathy Muhonen (Qorvo), Hang Li (Huawei), Shih-Hung Chen (AMD)

7.0 Facilities and Equipment
Pictured in figure 6 (below), is the “dummy” board that the Computer Science team was supplied
with. This board was used to simulate actual communication between our application and the
Electrical Engineering team’s finished board. In short, the board simply retransmitted any
message that it received back to the sender. This allowed our team to determine if messages that
were sent over the UART connection were what we expected to be transmitting. This also
 14

Electrostatic Discharge Latch-Up Detection

allowed our team to make significant progress toward a finished product, independent of the
Electrical Engineering team’s progress.

Pictured in figure 7 (below) is the finalized version of the mainboard and daughterboard created
by the Electrical Engineering team.

Figure 6: Dummy board for communication testing

Figure 7: Mainboard (left) and daughterboard (right) plugged into computer

 15

Electrostatic Discharge Latch-Up Detection

8.0 References
[1] E. Haseloff, “Latch-up, ESD, and other phenomena,” Texas Instruments Inc., SLYA014A,

2000. Available: https://www.ti.com/lit/an/slya014a/slya014a.pdf

[2] JEDEC, “JEDEC STANDARD IC Latch-Up Test,” JEDEC Solid State Technology

Association, JESD78F.02, November 2023. Available:
https://www.jedec.org/standards-documents/docs/jesd-78b

[3] R. Sheldon, “Complementary metal-oxide semiconductor (CMOS),” TechTarget, August

2022. Available:
https://www.techtarget.com/whatis/definition/CMOS-complementary-metal-oxide-semic
onductor

[4] P. Kirvan, “Electrostatic discharge (ESD),” TechTarget, March 2023. Available:

https://www.techtarget.com/whatis/definition/electrostatic-discharge-ESD

[5] Robson Technologies Inc., “Are you overlooking latch-up?” February 25, 2021.

Available: https://www.testfixtures.com/are-you-overlooking-latch-up/

[6] K. Söderby, “Using the serial plotter tool,” Arduino, September 12, 2024. Available:

https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-serial-plotter/

[7] Electric UI, Available: https://electricui.com/features

[8] Pandas Software, Available: https://pandas.pydata.org/

 16

https://www.ti.com/lit/an/slya014a/slya014a.pdf
https://www.jedec.org/standards-documents/docs/jesd-78b
https://www.techtarget.com/whatis/definition/CMOS-complementary-metal-oxide-semiconductor
https://www.techtarget.com/whatis/definition/CMOS-complementary-metal-oxide-semiconductor
https://www.techtarget.com/whatis/definition/electrostatic-discharge-ESD
https://www.testfixtures.com/are-you-overlooking-latch-up/
https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-serial-plotter/
https://electricui.com/features
https://pandas.pydata.org/

Electrostatic Discharge Latch-Up Detection

Figure 8: Approval email from sponsor team

 17

	Electrostatic Discharge Latch-Up Detection
	Abstract
	1.0​Problem
	2.0​Objective
	3.0​Background
	3.1​Key Concepts
	3.2​Related Work

	4.0​Design
	4.1​Use Cases
	4.2​Requirements
	4.2.1​Functional Requirements
	4.2.2​Interface Requirements
	4.2.3​Performance Requirements
	4.3 ​High-Level Architecture
	
	4.4 ​Detailed Architecture
	4.5 ​Data Management and Storage

	5.0​Development Plan
	
	5.3​Deliverables

	6.0​Key Personnel
	7.0​Facilities and Equipment
	8.0​References

