TABLE OF CONTENTS

1.0	PURPOSE		1
2.0	INTRODUC	CTION	1
3.0	ESD CHEC	CKS THROUGHOUT IC DESIGN FLOW	2
3	3.1 Produc	T DEFINITION PHASE	3
З	3.2 CHIP AR	CHITECTURE PHASE	4
3	3.3 MODULE	AND FULL IC DESIGN PHASE	4
	3.3.1 Floo Pov	orplanning of the Chip Architecture Modules and the Standard Digital I/(ver Banks) and
	3.3.2 Des	sign of IP Modules and Analog I/O Pad Rings	4
	3.3.3 Full	Chip IP and I/O Integration. Including Package	
3	B.4 DESIGN	Qualification Phase	5
4.0	BASIC ES	D CONCEPTS	
Δ	L1 ESD DE	SIGN WINDOW	6
4	2 SINGLE	DEVICES FAILURE CONDITIONS	
	421 Pas	sive Flements	
	422 Dio	des	9
	4.2.3 Bip	olar Transistors	10
	4.2.4 MO	S Transistors	
4	.3 GENERIC	C TOPOLOGY FAILURE CONDITIONS	
	4.3.1 Ser	ial Connections	12
	4.3.2 Par	allel Connections	13
4	.4 ESD Pr	OTECTION TOPOLOGY FAILURE CONDITIONS	14
4	.5 OVERVIE	EW OF ESD PROTECTION APPROACHES	16
	4.5.1 ESL	D Protection Devices	16
	4.5.2 ESI	D Protection Circuits	17
5.0	VERIFICA	TION OF CIRCUITS TO BE PROTECTED FROM ESD	20
5	5.1 VERIFICA	ATION OF CIRCUITS THAT CANNOT SHUNT ESD ENERGY	20
	Rule 5.1.1	Verify Protection of Pad-Connected Gate Oxides	20
	Rule 5.1.2	Verify Protection of Decoupling Capacitors (VDD-VSS)	24
	Rule 5.1.3	Verify Protection of Gates along Power Cross Domains Paths	25
	Rule 5.1.4	Verify Protection of Weak Devices (e.g. DeNMOS, LDMOS, Small Wit	dth
		Devices, etc.)	27
5	5.2 VERIFICA	ATION OF CIRCUITS THAT ARE REQUIRED TO SHUNT ALL ESD ENERGY	30
	Rule 5.2.1	Verify Self-Protecting Transistors (e.g. I/O Buffer) have Appropriate	
		Parameters (Width, Gate Length, Metal Routing, etc.)	31
	Rule 5.2.2	Verify Self-Protecting Embedded/Body Diodes have Appropriate Para	meters
		(Perimeter, Anode-Cathode Spacing, Metal Routing, etc.)	31
	Rule 5.2.3	Verify Self-Protecting Capacitors have Appropriate Capacitance	31

5.3 VERIFIC	ATION OF CIRCUITS THAT ARE ABLE TO SHUNT A PORTION OF THE ESD ENERGY	32
Rule 5.3.1	Verify Avoidance of Big Buffer Topologies Forming Low Impedance Path during ESD	33
Rule 5.3.2	Verify Avoidance of Parasitics Forming Low Impedance Path During ESD	35
Rule 5.3.3	Verify Avoidance of any Topologies with Ability to Sustain ESD Current in	
	Normal Device Operating Mode (Diode, BJT, FET, Mixed-Voltages) Forming	Y
	Low Impedance Path during ESD	39
6.0 VERIFICA	TION OF ESD PROTECTION NETWORK INTEGRATION	41
6.1 Cell Le	VEL ESD CHECKS	42
Rule 6.1.1	Verify that Correct Version of the Device/Design Kit/Cell/Library is being use	d
	when using Standard Library Cells or Parameterized Cells (PCELLs)	43
Rule 6.1.2	Verify Compliance of Individual and Multiple Cell Devices with ESD	
	Geometrical Rules	43
Rule 6.1.3	Verify ESD Protection Element between I/O and Power (VDD, VSS) Rails,	
	including Correct Device Polarity, within I/O Cell	44
Rule 6.1.4	Verify Power Clamp Between Power Rails (VDD, VSS), Including Correct	
	Device Polarity, within I/O or Supply Cell	46
Rule 6.1.5	Verify Trigger Circuit Implementation in Transient-Triggered Designs	48
Rule 6.1.6	Verify Termination Cell Implementation	51
Rule 6.1.7	Verify Interface Cell Implementation	52
Rule 6.1.8	Verify Device Rating Compliance in Cell Implementation	55
Rule 6.1.9	Verify Robustness of Metal Lines and Interconnects along the ESD	
	Protection Discharge Path	57
Rule 6.1.1	0 Verify Compliance of Extracted Metal Resistances of the Paths within the	
	Cell with Allowed Design Limits	57
Rule 6.1.1	1 Verify Implementation of Secondary ESD Protection Scheme	59
6.2 INTRA P	OWER DOMAIN ESD CHECKS	61
Rule 6.2.1	Verify that the Correct Type and Most Recent Version of I/O Cell is used in the I/O Bank	61
Rule 622	Verify the Compliance with I/O Placement Rules for ESD Distributed	
11010 0.2.2	Schemes	63
Rule 6.2.3	Verify the Presence of Intended ESD Current Path for Each Pin-Pair	00
1 (0) 2.2.0	Combination within an I/O Bank	64
Rule 624	Verify Robustness of Metal Lines and Interconnects for all ESD Discharge	
Nuic 0.2.4	Paths within an I/O Bank	66
Rule 625	Verify Compliance of Estimated Bus Resistance Between Pad and ESD Cel	00 I/
1 (0) 0.2.0	Device in an I/O Bank	, 67
Rule 626	Check the Integration of ESD Protection Elements and Bumps/Bondnads	69
Rule 6.2.7	Verify the ESD Triggering and Clamping Characteristics taking into Account	00
1 (010 0.2.1	Power Domain Canacitance	73
Rule 628	Perform First Order Evaluation of FSD Robustness by Calculating Pad	
1 (4)0 0.2.0	Voltage for ESD Stress within the I/O Bank	75
	OWER DOMAIN ESD VERIFICATION	78

	Rule 6.3.1	Verify that the Correct Type and Most Recent Versions of ESD Cells	
		Between Power Domains are used	78
	Rule 6.3.2	Verify the Presence of Intended ESD Current Paths Between any Pin Pairs	
		Belonging to Different Power Domains	78
	Rule 6.3.3	Verify Placement/Connectivity of Correct ESD Cells Between Power	
		Domains	80
	Rule 6.3.4	Verify Metal Width and Interconnect for Routes Between Power Domains,	
		Including ESD Cells Along the ESD Discharge Path	82
	Rule 6.3.5	Verify Compliance of Estimated Bus Resistance Between Two Pads in	
		Different Power Domains with Design Limits	86
	Rule 6.3.6	Perform First Order Evaluation of ESD Robustness by Calculating Pad	
		Voltage for ESD Stress Between Power Domains	87
6	.4 PACKAGE	ELEVEL ESD CHECKS	90
	Rule 6.4.1	Verify the Integrity of the Overall ESD Protection Network Achieved at	
		Package Pin Level	90
	Rule 6.4.2	Verify that Package RLC Network is Compatible with Overall ESD	
		Protection Scheme	93
	Rule 6.4.3	Verify the Integrity of the Overall ESD Protection Network Achieved at	
		Package Pin Level when Having Multi-Die (System in a Package) Designs	95
	Rule 6.4.4	Verify that CDM Peak Current of the Package-Die System is Below the	
		Maximum CDM Current Tolerated by the IC	96
7.0	OVERVIEW	OF ESD EDA VERIFICATION APPROACHES	. 99
8.0	CONCLUSI	ONS	104
9.0	ACKNOWL	EDGEMENTS	104
10.0	GLOSSAR	Y/DEFINITIONS	104
11.0	REFERENC	ES	107

TABLES

Table 1.	Cell Level ESD Check Summary	43
Table 2.	Example of an RC-Triggered Clamp Design Specification	50
Table 3.	ESD EDA Rules Summary	101

FIGURES

Figure 1:	Simple ESD Verification Flow Mapped to Sample IC Design Flow and Referenced to Rules.	2
Figure 2:	Generic ESD Design Window.	6
Figure 3:	Wunsch-Bell Model for Power to Failure vs. Time to Failure	7
Figure 4:	Voltage Acceleration of NFET Stressed in Inversion for Seven Oxide Thicknesses (6.85 to 1.1 nm)	8
Figure 5:	Generic Two-Pin Representation of Passives.	8

Figure 6:	Generic Two-Pin Representation of Diodes.	9
Figure 7:	Generic NPN Bipolar Representation.	.10
Figure 8:	Generic MOS Representation	.11
Figure 9:	Generic Serial Connection	.12
Figure 10:	Example Topology for Serial Connection.	.13
Figure 11:	Generic Parallel Connection of Basic Element	.13
Figure 12:	Example Topology for Parallel Connection	.14
Figure 13:	Design Case with ESD Energy Shunted Through the ESD Clamping Device	.15
Figure 14:	Design Case with ESD Energy Shunted Through the Circuits to be Protected	.15
Figure 15:	Design Case with ESD Energy Shared Between the ESD Clamp Circuit and the Circuit to be Protected.	.16
Figure 16:	ESD Elements with Various Triggering Mechanisms.	.17
Figure 17:	Rail Clamp vs. Local Clamp Based Protection Approaches	.18
Figure 18:	Using Low Resistance Master VSS Bus vs. APD Connected Ground Domains	.19
Figure 19:	Breakdown Voltage Acceleration as a Function of the Physical Oxide Thickness for NFET and PFET Stressed at 25°C in the HBM Range of Time for a Normalized Size of 1.2 μm^2	.21
Figure 20:	Pad-Connected Gate Oxide	.21
Figure 21:	Generic Secondary Protection Element to Reduce Voltage Built Across a Gate Oxide.	.23
Figure 22:	As the Parasitic Resistance from the Primary ESD Protection Element to VSS Pad Exceeds a Critical Value, the Need for a Secondary ESD Protection Element to the Input Arises	.23
Figure 23:	Decoupling Capacitor Example (VDD-VSS)	.24
Figure 24:	Example Case of Decoupling Cap Insertion for Flip-Chip ESD Protection in I/O	.25
Figure 25:	Typical Signal Cross-Domain ESD Issue.	.25
Figure 26:	Simplified Cross-Domain Resistive ESD Network Model	.26
Figure 27:	Full-Chip Cross-Domain Voltage Map for Stress Between Domain 3 and Domain 1, with Indication of Over-Voltage Situation at the I/O Interface of Domain 1	.26
Figure 28:	Screenshot of the Results of the Cross-Domain Schematic Checking Tool, Highlighting an NFET Device (N10) Whose Terminals are Connected to Two Different Power Domains	.27
Figure 29:	Illustration of ESD Shell Models for MOSFETS	.28
Figure 30:	Tool Flow Chart	.29
Figure 31:	ESD Verification Flow From	.29
Figure 32:	A Cross-Section Image of the Parasitic Bipolar that can be Formed when an N-Well is Connected to an I/O Pad that is too Close to Another N-Well Connected to a Different Pad	.30
Figure 33:	Screenshot of the DRC Tool Results Showing Error Regions Where an N-Well Resistor is Placed too Close to a PFET	.30
Figure 34:	Generic Representation of Distributed Decoupling Capacitors Between Power Supplies	.32
Figure 35:	Generic Ballasting Resistor to Protect a Topology Able to Withstand a Finite Current During ESD Conditions.	.33
Figure 36:	"Big-Buffer" ESD Example	.34
Figure 37:	Instruction Set Example in a Commercial Tool to Screen out Big-Buffer Topology in a Design Netlist	.35

Figure 38:	Generic Parasitic Bipolar Embedded in MOS	.35
Figure 39:	"Hot" Parasitic Bipolar NPN Formed by Adjacent n-type Diffusions in the Same Substrate	.36
Figure 40:	Hot Transistor, Source Connected to Signal Pin (I/O) and Drain Connected to Ground Pin (VSS)	.37
Figure 41:	Hot NPN Parasitic Formed with Emitter Connected to Signal Pin, Collector Connected to Ground Pin, and Base Connected to Ground Pin	.37
Figure 42:	Typical ESD Snap-Back I-V and its Parameters	.38
Figure 43:	An ESD Network Graph, Representing the ESD Elements Through the Parameters of ESD IV's and Connectivity	.38
Figure 44:	Generic Inverter with Explicit Body-Diodes D1 And D2	.39
Figure 45:	Example of a Typical Circuit Using Mixed-Voltage Device Design	.40
Figure 46:	IC Schematic with Protection Circuits to be Extracted	.40
Figure 47:	Identified Possible ESD Active Devices in the ESD 'Critical' Path for the Circuit In Figure 46, and Devices ESD I-V Parameters	.41
Figure 48:	Examples of Intended ESD Discharge Paths	.42
Figure 49:	Example of Silicide Block Spacing Rule	.44
Figure 50:	ESD I/O Protection Element Verification	.45
Figure 51:	Example Case for Flip-Chip ESD Protection in I/O	.45
Figure 52:	Optimization of ESD Protection Elements	.45
Figure 53:	Comprehensive and Fast ESD Discharging Path Check with Connectivity, Resistance, and Current Density Checks	.46
Figure 54:	ESD Power Clamp Verification	.47
Figure 55:	A Cross-Domain Layout Example	.47
Figure 56:	A Cross-Domain Circuit Schematic Example	.48
Figure 57:	Typical RC-Triggered Clamp Schematic	.49
Figure 58:	Example of a Remote Trigger RC Power Clamp Topology	.49
Figure 59:	Example of a Possible Clamp Integration Problem	.51
Figure 60:	Example of Rule 6.1.6	.52
Figure 61:	Two Examples of Different Interface Cells Used Between Power Domains to be Checked by Rule 6.1.7.	.53
Figure 62:	Illustrative Example Of "Controller" Placement	.54
Figure 63:	Check Flow for Top Level Verification	.54
Figure 64:	Example of Rule 6.1.8	.55
Figure 65:	Example of I/O Controller Component	.56
Figure 66:	Improperly Connected Gates and Power Domains in a Digital Circuit	.56
Figure 67:	ESD Metallization Robustness Verification	.57
Figure 68:	Example of Rule 6.1.10	.58
Figure 69:	An Approach for Resistance and Current Density Checks for ESD Protection Network	.59
Figure 70:	Secondary ESD Protection Implementation Example in CMOS and Bipolar Technologies.	.60
Figure 71:	ESD Verification Flow and Circuit Topology used to Check Gate Oxide Protection Crossing Power Domains	.60
Figure 72:	ESD Checker Tool Verification Flow	.62
Figure 73:	ESD Checker Tool Error Viewer GUI	.62

Figure 74:	ESD Distributed Scheme Verification	.63
Figure 75:	Floorplan Example of Different I/O Cells for I/O Ring Layout	.64
Figure 76:	Example Placement of the Clamp (M1), Trigger Circuit (T) and Decoupling Capacitor (C1) I/O Cells in a Self-Protecting 24 I/O Bank	.64
Figure 77:	Checking Missing ESD Protection Between VDD and VSS When I/O 1 and I/O 2 Share the Same Power/Ground Domains	.65
Figure 78:	Lacking of Both a Supply Clamp Cell and a Supply Controller Highlighting Rule 6.2.3 Violation	.65
Figure 79:	Typical I-V Curve for a Snapback Clamp and I-V Curve for a Diode is a Degenerate Case with Vh=Vt1	.66
Figure 80:	Current Density Check of an HBM/MM Event with Diodes/Clamps Represented as I-V Curves	.66
Figure 81:	ESD EM Map Shows the HBM Failure on P2 and AVSS Nets	.67
Figure 82:	Schematic Illustration of Metal Bus Resistance Between a Pad and ESD Device	.67
Figure 83:	Methodology Steps to Verify ESD Protection Network Using Validation Software to Analyze the Design Netlist	.68
Figure 84:	Software Highlights Parallel Power Clamps in Discharge Paths from Vdde Pad to Vsse Pad	.68
Figure 85:	Example of Rule 6.2.6 Showing that any VDD/VSS Bump Should be Electrically Close to an ESD Protection Element Within Rcrit Ohm	.70
Figure 86:	Flip-Chip Example	.70
Figure 87:	Resistance Check Methodology Flow Diagram	.71
Figure 88:	Simulation Flow Diagram of Software Tool for Full Chip ESD Network Verification .	.72
Figure 89:	Detailed ESD Event Analysis Highlighting the Most Critical Layers, in Terms of Resistance or Current Density Violation	.72
Figure 90:	Visualization of the Current Crowding Issues that were Observed in the M9 Layer .	.73
Figure 91:	Example of Rule 6.2.7	.74
Figure 92:	Substrate Modeling for 3-D Mesh of RC Extraction and Distributed Well-Diode and Hooked up to Metal Grid RLC Network	.74
Figure 93:	CDM Failure Test Case with -500 Volt Zap on IOP Pin	.75
Figure 94:	Power/Ground Grid RLC, Signal Coupled RC, Substrate RC, Well Diodes, Package RLC, and Pogo Pin RLC are Considered in the ESD CDM Simulation During a CDM Event	.75
Figure 95:	Example of Pin to Pin Stress Condition on a Simple I/O Ring	.76
Figure 96:	Example of Rule 6.2.8.	.77
Figure 97:	Schematic of a Power Domain with Parallel Power Clamps and the Set of Two Piece-Wise Linear I-V Characteristics of the Power Clamps used for the Permutation Method.	.77
Figure 98:	Typical Multiple Power Domains Implementations	.79
Figure 99:	Circuit with Negative Supply Rail in Different Hierarchy	.80
Figure 100:	A 5-Volt VDD is Protected Against its Neighboring 3.3-Volt VDD by a Grounded-Gate FET (ggFET)	.81
Figure 101:	Anti-Parallel Diodes Between Neighboring VDD Busses Creates a Short and Robust ESD Protection Path	.81
Figure 102:	An Example Checking the Discharge Path Between Two I/O in Different Power Domains as Per Rule 6.3.4	.82

Figure 103:	Screenshot of the Results of the Current Density-Based Tool Run, Showing Regions of High Current Spots Greater than the Allowed Maximum Current Densities in a Metal Bus	82
Figure 104:	Optical Image of a Part After Failure Analysis, Showing Regions of BEOL Failure Matching the Predicted Failure Regions by the Current Density-Based Tool	83
Figure 105:	Layout and Simulated Current Densities in the Top Metal Layers and Vias of an Input Circuit Containing a Pad, Two ESD Diodes, and Two Power Nets	83
Figure 106:	Current Densities in Selected Layers Over the Top Half of Np-Pw ESD Diode	84
Figure 107:	A 3D View of the Low-Capacitance Pad	84
Figure 108:	Individual Metal Layers Contributions (In Percent) to Total Pad Capacitance	85
Figure 109:	Flowchart of Verification ESD Tool	85
Figure 110:	A Diagram Showing the Shortest ESD Path Found by the Verification ESD Tool?	86
Figure 111:	Estimating the Total Bus Resistance of the Bussing Connections Between Pads	07
	An Example of VQ Ding Applysic	8/ 00
Figure 112:	An Example of Voltage Drep Analysis	00
Figure 113:	Example of Voltage Drop Analysis in Multiple Power Domain System	89
Figure 114:	Elements and Schematic Indication Missing Connection Between VSSB and VSSP Leading to the Fail of the Parasitic Bipolar	90
Figure 115	Example of Rule 6.4.1	91
Figure 116:	Package Level ESD Network Verification	92
Figure 117:	CDM Waveforms for Different Package Trace Time Delays	92
Figure 118:	Current Through ESD Element at the Far End of the Transmission Line on	
	Different Chip Pad	93
Figure 119:	Schematic for Spice Simulation of CDM Waveforms	93
Figure 120:	The Presence of the Package RLC Parasitics Could Lead to the Increase of the ESD Stress Levels Vdev at the Internal Circuit Nodes	94
Figure 121:	Chip-Level CDF Model Extraction And Simulation Process Flow	94
Figure 122:	A Macromodel for Each Subsystem in a Chip, and Equivalent Circuits Driven by Protection Circuits, Input Buffer, and Output Buffer	94
Figure 123:	Example of Cross-Die ESD Path in a Multi-Die (System in a Package Design)	95
Figure 124:	CDM Peak Current Dependence on Package Size and Type	96
Figure 125:	Flip-Chip Package Cross-Section; Cdut is Between the Silicon Die/Package and Metal Lid that is Separated by Thermal Interface Material (TIM)	97
Figure 126:	Two Paths of CDM Peak Current	97
Figure 127:	A Package with a 3-Layer Substrate Placed on the Field Plate of the FICDM Tester	98
Figure 128:	Data Flow Diagram of the Automated Peak Current Estimation Tool	98